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Dual Combination Combination
Anti-synchronization Of Non-identical Fractional
Order Chaotic System With Different Dimension
Using Scaling Matrix
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Abstract

In this manuscript Dual Combination Combination Anti-Synchronization(DCCAS) has been performed among
eight non identical fractional order chaotic systems with different dimensions using scaling matrix .Based on
the Lyapunov Stability Theory and Active control technique, DCCAS has been achieved.To verify our results
numerical simulations have been provided, which shows that our theoretical results are in complete agreement

with the graphical one.
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1. Introduction

Chaos Theory[2] [7] [15] is a branch of mathematics which
deals with the behavior analysis of non linear dynamical sys-
tems.An interesting property of chaotic systems,termed as
’Butterfly Effect’ is sensitive dependence on initial condi-
tions.In chaos synchronization, trajectories of two chaotic sys-
tems are made to follow the same dynamics.Synchronization
was first introduced by Pecora & Caroll[9] in 1990.Recently
chaos control and chaos synchronization [12][4][8][6] of frac-
tional order dynamical systems has become an active field of
study.Many techniques have been developed for control and
synchronization of chaos.

From last two decades,fractional calculus[5][10] has played
a major role in the study of non linear dynamical systems. The
edge of fractional calculus over integer calculus is its ability

to describe real systems in the interdisciplinary fields more
elegantly .It also has a long range memory behavior as com-
pared to its integer counterparts.Fractional calculus has proved
useful in the fields of engineering sciences such as secure
communication [14],data encryption,visco-elasticity,electro-
magnetic waves,dielectric polarization etc.

The rest of the article is organized as:
Sec 2 consists of problem formulation,Sec 3 describes the sys-
tems on which numerical simulations have been performed.Sec
4 contains numerical simulations and discussions.Sec 5 con-

cludes the article.
1

2. Problem Formulation

We here design the dual combination combination anti-synchronization
scheme.We first consider two master systems as:

D“Xl =A1X; +F1(X1)
DaY] = B1Y] —|—G1(Y1)

ey
@

where X] [xl],X]z,...X1n]T and Y] [yll,y127---y1n]T are
state vectors of master systems (1) and (2) respectively, A| €
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R™" By € R"™" are linear parts of respective systems (1) and
(2),F1,G| : R" — R" are continuous vector functions of sys-
tems (1) and (2) respectively.

Next we consider two more master systems as:

DX, = A X0+ B (Xz) 3)

DY, = By X, + G1(Xa) )
where Xo = [x21,X22,...x2,]7 and Y2 = [y21,¥22,...y24]7 are
state vectors of master systems (3) and (4) respectively, A, €
R™", By € R™*" are linear parts of respective systems (3) and
(4),F>,G> : R" — R" are continuous vector functions of sys-
tems (3) and (4) respectively.

For master systems (1) and (2),we consider two slave sys-
tems as:

D¥X3 = A3X3+ F3(X3) + Uy )]
D%*Y3 =B3Y3+G3(Y2)+V1 (6)

where X3 = [X317)C32,...X3n}r and Y3 = [y31,y32,...y3n]r are
state vectors of slave systems (5) and (6) respectively, Az €
R™" B3 € R™™ are linear parts of respective systems (5)
and (6),F3,G3 : R" — R" are continuous vector functions of
systems (5) and (6) respectively. Uy, V) are control functions
which are to be designed.

For master systems (3) and (4),we consider two slave systems
as:

DXy = AuXa + Fs(Xa) + Us (7

D%Yy = B4Y4+ G4(Yy) + V2 (8)
where Xy = [x41,%42,...%45)7 and Yy = [y41,y42,...y4n)" are
state vectors of slave systems (7) and (8) respectively, A4 €
R ™", By € R are linear parts of respective systems (7)
and (8),Fy,G4 : R* — R" are continuous vector functions of
systems (7) and (8) respectively. U, V; are control functions

which are to be designed.
We define the error state function as:

E=W+2Z)+0(Y +X) 9)

where E = [ey,es]T W = [X3, 1317, Z = [Xa4, Y], Y = [X1,11]7,
X =X, V)"

101 0 }
Q= { 0 O
Therefore equation (9) simplifies to:

e = (X3 +X4)+Q1(X2+X1) (10)
er=Y3+Ys)+ 0 (Y +11) (11)
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Differentiating (10) and (11) we obtain the error system as:

D% = (D*X3+D%Xy) + 01D* (X2 + X1)
D%; = (D*Y3+ D%Y4) + 0,D* (Y2 + Y1)

12)
(13)

Simplifying (12) and (13) we get

D% = Azer —A3Xy —A301 (X2 + X1) + F3(X3) +Aser
—AyXz —A401 (X1 +X2) + Fi(Xy) — 0142 X5
+B(X)+A X1+ R X))+ Ui +Ux (14)

D% = Bsey —B3Ys —B302(Y2+ Y1) + G3(Y3) + Baea
—B4Ys —B4Qr (Y1 + Y2) + Ga(Ys) — Q2 [B2Ya
+G () +BI1+Gi ()] +Vi+Va  (15)

Choosing controllers as:

U =—-01[A1X1+F(X))]+A3X4+A301 (X1 +X0) — F3(X3) +
Kieg

Uy =—01[A X2+ F(X2)]|+AsX3+A401 (X1 +Xo) — Fa(X4) +
Kser

Vi=—01[B1Y1+G (Y1) +B3Ys+B30: (Y1 +Y2) — G3(Y3) +
Kse;

Vo =—02[B2Y2+Go(Y2)]| +BaYs +Bs Q2 (Y1 +Y2) — Ga(Ys) +
K4€2

Then from the following lemma and theorem the desired syn-
chronization is achieved.

Lemma: Stability Analysis Of Fractional Order Linear
System
Consider the fractional order linear system as:

D%x(t) = Ax(r) (16)

with initial value x(0) = xo = (x10,X20,---,Xn0), Where x =
(x1,%2,..%,)T is a state vector and & € (0,1) and A € R™".
Then the autonomous system (16) is said to be asymptotically
stable iff |arg(4;(A))| > %F,i=1,2, ...n, where arg(A;(A)) de-
notes the argument of the eigenvalues A; of A.

Theorem: To achieve the desired dual combination-combination
anti-synchronization between chaotic systems (1)-(8) we de-
sign the control functions as:

U= —Qi[A2Xo+F(X2) + A1 X1 + Fi(X1)] +A3Xs
+AsX3 +A301 (X0 +X1) +As01 (X0 + X1 )—
F3(X3) —F4(X4) +Kie; +Krep (17)

V= —BY2+G2(Y2) +B1Y1 + G (Y1)] + B3Ys
+B4Y3 +B30x(Y2+Y1) +BsOr (Y2 + Y1) —

G3(Y3) — G4(Ya) + Kzey + Kyer (18)

where K|, K>, K3, K4 € R""are control gain matrices.
Then the dual combination combination anti synchronization
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synchronization of eight systems (1)-(8) is achieved.

Proof:

We have the error system as in (14) and (15).Substituting the
designed controllers (17) and (18) in (14) and (15),the error
system simplifies to:

D% = (A3 + K| +As+Kr)ey
D% = (B3+ K| +Bs+K>)es

19)
(20)

Using the stability lemma for fractional order chaotic sys-
tems we have that the error system (17) and (18) asymptot-
ically approaches zero if we have |arg(4;)| > %F,where A;
are the eigen values of the matrix A3 + K| + A4 + K> and
B3 + K3 + By + Ky. i.e.limi_,o||e]| = 0 i.e error approaches
zero with time implying DCCAS has been achieved.

3. System Description

‘We have illustrated dual combination combination anti-
synchronization,considering the following mathematical mod-
els.

Fractional Order Complex Lorenz System:

do‘x”

Ja —anbuz—xn)

d“xlz

qa — (s —xn)

d“x13

qpa = Xl X3 X

d“x14

Jpa = @1Xiz T X Xxs

d‘xx15

gpa X3 HXiX1e — 13X (2D

where aj1,a12,a13 are parameters of system.For parameter val-
ues a1 = 10,a12 = 180,a;3 = 1 and initial values (x1(0),x12(0),
x13(0),x14(0),x15(0)) = (2,3,5,6,9) and & = 0.95 the sys-
tem is chaotic as shown in Fig.1.

Fractional Order Complex T System:

d;yojl =bin(yi3—yu)

d;tyozz =b11(y14 —y12)

d;yf = (b2 —b1)yu —buynuyis

% = (b1 —b11)y12 — b11yi2yis

d;yozs = yuyi3 +ynyi —bizyis (22)

where b11,b12,b13 are parameters of system.For parameter val-

ues b11 = 2.1,[912 = 30,[913 = (0.6 and initial values (yu (0),)’12(0),
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y13(0),y14(0),y15(0)) = (8,7,6,8,7) and o = 0.94 the sys-
tem is chaotic as shown in Fig.1.
Fractional Order Complex Lu System:

dO‘X21
Ja il —x)
dasz
Jpa = aa1(vs— )
d%xy3
gro XS +axa3
d%xo4
gro XS +axnx
do‘xz
Jpo = 2123 X2X04 — 23X (23)

where ay1,a27,a23 are parameters of system.For parameter val-
ues ap) =40,a2; = 22,ap3 = 5 and initial values (x21(0),x22(0),
x23(0),x24(0),x25(0)) = (1,2,3,4,5) and o = 0.95 the sys-
tem is chaotic as shown in Fig.1.

Fractional Order Complex Chen System:

d%y»

P ba1(y23 —y21)
d;y; 2 — by (v24 —¥22)
d;:]f = (b23 — ba1)y21 —¥21¥25 + b23y23
d;tyf = (b3 — b21)y22 —y22¥25 + b23y24
d;ty; > = ya1y23 + y22y24 — boyos (24)

where by1,b22,by3 are parameters of system .For parameter val-
ues by = 35,byy = 3,bp3 =28 and initial values (y»1(0),y22(0),
v23(0),324(0),25(0)) = (1,2,3,4,5) and & = 0.95 the sys-
tem is chaotic as shown in Fig.1.

Fractional Order Hyper-chaotic Xling System:

daxgl
Jra = 31 (¥32 — x31) + X34
d%x3,
gra 43231 +X31X13 — X34
daX33
Jpo — @33%33 —a34X31431 (25)
da)C34
e = a33x3]

where a31,a37,a33,a34 are parameters of system .For parameter
values a3 = 10,a3; = 40,a33 = 2.5,a34 = 4 and initial values
(x31(0),x32(0),

x33(0),x34(0)) = (10,40,2.5,4) and oc = 0.95 the system is
hyper-chaotic as shown in Fig.1.
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(9) (h)

Fig 1:Phase portraits of master and slave systems (a)Complex
Lorenz chaotic system in x| —x13 — x13 planes (b)Complex T
chaotic system in xp1] — xp2 — x»3 planes (¢)Complex Lu chaotic
system in x3; —x3p —x33 planes (d)Complex Chen chaotic system in
X41 — X42 — Xx43 planes (e)Xling chaotic system in y;; —y12 —y13
planes (f) Vanderpol chaotic system in y;; — y22 — y»3 planes
(g)Rabinovich chaotic system in y3; — y3p — y33 planes (h)Rikitake
chaotic system in y4; — y42 — Y43 planes
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Fractional Order Vanderpol Hyperchaotic System:

d%s .

e =R

da

dty; 2= —(b31 +b32y33)y31 — (b31 +b32y33)y3; — basysz + bagyss
d%ys3;

= 26

qro 3 (26)
da

dty; t = —b3sy33 +bas(1 —y33y33)y34 +b37y31

where b31,b32,b33,b34,b35,b36,b37 are parameters of system.For
parameter values b3; = 10,b3, = 3,033 = 0.4,b34 = 70,b35 =
1,b36 = 5,b37 = 0.1 and initial values (y31(0),y32(0),
v33(0),y34(0)) = (0.1,-0.5,0.1,—0.5) and o = 0.95 the sys-
tem is hyper-chaotic as shown in Fig.1.

Fractional Order Rabinovich Hyperchaotic System:

da)C41
e (—aa1xa1 + aaoxan) + x42x23
daX42
Jra T (M2X41 T da3Xay — X41X43 + X44
dOLX43
Jpo T 4aka3 + X41X42 27
d%xyy
dtT = —a45X42

where a41,a42,a43,044,a45 are parameters of system .For pa-
rameter values as; = 34,a4p = 6.75,a43 = l,a44 = l,a45 =2
and initial values (x41(0),x42(0),

x43(0),x44(0)) = (5.5,—1.25,8.4,2.75) and o = 0.95 the sys-
tem is hyper-chaotic as shown in Fig.1.

Fractional Order Hyperchaotic Rikitake System:

d%y4
dty“ = —bu1ya1 +y42y43 — bazyas
A%y
dty“ = —ba1ysr +y41(y43 — ba3) — baoyas
d%ya3
=1- 28
ara Va1y42 (28)
d%yas b
e 44Y42

where bay,ba2,ba3,b44 are parameters of system .For parameter
values by = 1,bgp = 1.7,bsz = 1,bsg = 0.7 and initial values
(341(0),y42(0),

v43(0),y44(0)) = (3.5,1.7,—4.5,2.8) and oc = 0.95 the sys-
tem is hyper-chaotic as shown in Fig.1.

4. Numerical Simulations & Discussions

We consider (21),(23),(25),(27) as master systems and (22),(24),(26),(28)

as slave systems.From Section 2 we have for the above de-
fined systems the following matrices:
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—an 0 a0 0 e14 = (X34 +x44) + (x24 +x14) + (x25 +x15)
0 —an 0 a1 O e21 = (y31 +ya1) + (21 +y11)
Ar=| an 0 -1 0 0 1, en = (yn+yau)+ On+yi2)
0 ap 0 -1 0 €23 = (33 +y43) + (y23 +y13)
Y 0 0 0 -—as] x4 = (y34+yaa) + (y2a +y14) + (v25 +15)
—az1 0 ay O 0 where e = [e1,e12,e13,e14]” and ex = [e21, €2, €23, €24 .
0 —dajl 0 any 0
A= 0 0 an O 0 Choosing the control functions U = Uy +U,,V =V +V,
0 0 0 ap 0 as given in (17) & (18):
L 0 0 0 0 —(123_
—az a3 0 1 —ay ap 0 0
A 0 ay O A an  —axz 0 1 Ui+ uz
3 0 0 —ap O —an 0 0 O Uy +U, = w2 +ux (30)
0 0 0 au 0 —ass 0 O 13 +u3
L 7 0 = 0 U4+ U4
0 0 e -
Fi(X)) = xXxis Py (%) = —Xo1as a11X11 — a11X13 — d31X41 + az1x42 + X44 — a3
—XpaXis N (x12 +f6212):aiIEXI2++axz§C) +_(?;14;-X2j2-x]165 +x25)
X11X13 +X12X14 X21X23 + X22X24 3e2 14 21421 21423 41531
= - Fagxzn —xaxa3 — as (x11 +x21) + aso (x12 +x22) — assern
0 X42X43
X31X —X41X.
FB(X3)=|_ a;1x3313x31 Fiy(Xy) = x:;‘f a11X12 — A11X14 + a32X41 — X44 — X31X33 + a3
0 0 (x11+x21) — (x14 +X24 +X15 +x25) — azzer) +az1x2 —azy
- 0 b 0 07 X24 + agX31 + as2x32 + X34 + X41X43 + a2 (X1
—byi 1
—+X; —agz(xX12 +x20) + (X14 + x4 +Xx15 + X —agne
0 by, 0 by 0 _ 21) —a43(x12 +x22) + (X14 +x24 +x15 +x25) — asen
By= |(bp—b 0 0 0 0
: (b2 —b1) —a12X11 +X13 +X11X15 — A33X43 + A34X31X31
0 (bo—by) O 0 0
—a33(X13 +X23) — a2X23 + X21X25 — A44X33 — X41
= 0 0 0 0 =hi X2 — asa(x13 +x23)
[ —by 0 by O 0 ]
B b 0 b _82' bo b(z)' 8 —aix12 + X14 + a3xis + x12X15 + X11X13 + X12
2= |( 236 21) b b (2)3 b 0 X14 +a33xa) +azzenn — e14 — axnxo +azxos
0 (b23 6 21) 0 (2)3 b +X20X05 — X21X23 — X22X24 — A45X32 — das(X12
L 2] +x22) +assern |
0 0 0 0 —by4; 0 0 —bgT
By— —b31 —b3z by O By — —byz —byy 0 —bsp Vi1 +var
0 0 0 1 0 0 0 0 ViV, = vigt+va| 31
by1 0  —b3s bsg 0 by 0 O P2 b |
0 0 Vi4+vo4
0 0
Gi)=| —buyiyis | G(1a)= —Y21)25 G;(h3) = _ )
b _ byt —b11yiz +ya2 + (12 +y22) — e — ba1ya1 —ba1y2s — bay
11215 Y2225 (11 4+y21) = baa((y1a +y24 +y15 +¥25) + bazens
y1yiz+yiyia Y21Y23 + 22524
0 Ya2y4s b11y12 — b11Y14 — b31Y41 — b33y42 + b34ya3 + b32y33y31+
TY31)33 G4(Y4) = | Y4y We have considered here: (b31 +b32y33)y31¥31¥31 — D31 (11 +y21) —b33(V12 +y22)
y31y32 —Y41Y42 +b34(y13 +y23) +b3rear — basens
—¥32Y33 | 0
—(b12 = b11)y11 Fb11y1115 +Yaa + (V14 + Y24 + Y15 +¥25) — €23
(1) (1) g 8 8 —e24 — (b23 — ba1)y21 — ba3yaz +y21y25 +Ya1y42
Q=0 001 00 29 —(b12 = b11)y12 +b13y15 +b11y12y15 — Y11Y13 — Y12Y14 + b37
0 0 0 1 1 Y41 — b3syaz +bagyas +b3ey33y33yaa +b37(yi1 +y21)—

Therefore we get the error function as:

e11 = (x31 +x41) + (x21 +x11)
e = (X3 +x42) + (x22 +x12)
e13 = (%33 +x43) + (123 +x13)

b35(y13 +¥23) +b36 (V14 + Y24 + 15 +y25) — b37ear +bysens
— (b3 + 1)eas — (b23 — ba1)y22 — ba3yas +b22y2s5 — ¥21Y23 — ¥22Y24

L +bagy3r +yaa(yi2 +y22) — basenr _

From (19) and (20),we obtain the error system as:
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der (A3 + K1 +A4+K>)
= e
P 3+ K +A1+Kz)en
42 Byt Ky +Bst Kn)e
o~ BatKitBatKr)e
(32)
Choosing control gain matrices as:
0 —az; 0 —1 0 —ap 0 0
_ | a3 0 0 0 | a4 0 0 0
K=10o" 0 o o5 0 0 0o
—dasj 0 0 -1 0 ags 0 0
[0 —1 0 0
| b1 0 —by 0
B=l0o o -1 <
|—b37 0 b3s  —b3g—1
[0 0 0 by
| b4z 0 0 bap
K=10 0o o o
|0 —bu 0 0O

the systems (21)-(28) achieve the dual combination combina-
tion anti synchronization as shown in Fig. 2.Also the error
plot of the system converges to zero for initial conditions of er-
ror system as (ej1,e12,€13,e14) = (9.5,5.75,19.4,30.75) and
(e21,e22,€23,e24) = (12.6,10.2,4.5,26.3) as shown in Fig. 3.

5. Conclusion

In this paper the dual combination combination anti-
synchronization has been achieved among eight fractional
order chaotic systems with different dimensions using scaling
matrix.The synchronization has been achieved using the sta-
bility result of fractional order systems.

This technique would be useful in the field of secure commu-
nication because of the complexity of the systems involved.
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